引用本文:张伟亚,宋保靓,陈向阳,晏金灿,谭智毅. 基于互信息和贝叶斯算法的天然气合成润滑油鉴别技术[J]. 石油与天然气化工, 2023, 52(5): 115-120.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1121次   下载 498 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于互信息和贝叶斯算法的天然气合成润滑油鉴别技术
张伟亚1,2,宋保靓1,2,陈向阳1,2,晏金灿3,谭智毅4
1.深圳海关工业品检测技术中心;2.深圳市检验检疫科学研究院;3.中山大学惠州研究院;4.广州海关技术中心
摘要:
目的 为完善润滑油的关税鉴定,提出了一种基于互信息和贝叶斯算法的天然气合成润滑油鉴别技术。方法 首先,提取了天然气合成润滑油和常规矿物油基润滑油的特征参数,并运用互信息方法对其进行特征指标选择,筛选出具有鉴别能力的特征指标。然后,对所选特征指标采用贝叶斯算法进行建模,最终实现了天然气合成润滑油和常规矿物润滑油的分类鉴别。结果 实验结果表明,该方法所建立的模型能够有效鉴别天然气合成润滑油和常规矿物润滑油。结论 该方法所建立的模型具有良好的稳定性和可靠性,为润滑油行业和关税鉴定提供了一种全面和准确的鉴别工具。 
关键词:  天然气合成润滑油  互信息方法  特征选择  贝叶斯算法 
DOI:10.3969/j.issn.1007-3426.2023.05.017
分类号:
基金项目:深圳海关科研项目“GTL润滑油和矿物油基润滑油的鉴别方法研究”(2022SZHK002);深圳海关科研项目“基于大数据与AI的固体废物属性鉴别关键技术的研究及应用”(2021SZHK010)
Gas-to-liquid lubricant identification technology based on mutual information and Bayesian algorithm
Zhang Weiya1,2, Song Baoliang1,2, Chen Xiangyang1,2, Yan Jincan3, Tan Zhiyi4
1.Shenzhen Customs Industrial Products Testing Technology Center, Shenzhen, Guangdong, China;2. Shenzhen Academy of Inspection and Quarantine, Shenzhen, Guangdong, China;3. SYSU-Huizhou Research Institute, Huizhou, Guangdong, China;4. Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
Abstract:
Objective A novel technique for the identification of gas-to-liquid (GTL) lubricants based on mutual information method and Bayesian algorithm is proposed to enhance the tariff identification of lubricating oils. Methods First, feature parameters of GTL lubricants and conventional petroleum lubricants are extracted, and the mutual information algorithm is used to select feature indicators with discriminative ability. Then, the Bayesian algorithm is used to model the selected feature indicators, which finally achieves the classification discrimination of GTL lubricants and conventional lubricants. Results The experimental results demonstrate the effectiveness of the proposed method in accurately discriminating between GTL lubricants and conventional petroleum lubricants. Conclusion sThe established model exhibits good stability and reliability, providing a comprehensive and accurate identification tool for the lubricating oil industry and tariff assessment.
Key words:  gas-to-liquid lubricant  mutual information method  feature selection  Bayesian algorithm