引用本文:龚文政,王飞,王荧光,梁勇,孙恒,郑达,等. 基于LNG冷能的CO2液化提纯及发电工艺设计与优化[J]. 石油与天然气化工, 2025, 54(1): 38-44.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 88次   下载 42 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于LNG冷能的CO2液化提纯及发电工艺设计与优化
龚文政,王飞,王荧光,梁勇,孙恒,郑达,王妍静,史博会
1.国家管网集团工程技术创新有限公司;2.中国石油大学(北京)油气管道输送安全国家工程研究中心;3.中国石油大学(北京)石油工程教育部重点实验室;4.中国石油大学(北京)城市油气输配技术北京市重点实验室
摘要:
目的 为了生产可直接用于工业制造及食品加工的高纯度CO2,提出了一种利用LNG冷能液化提纯CO2及发电的新工艺。方法 使用HYSYS软件对不同循环工质及不同的运行参数进行模拟,分析了循环工质对CO2液化量和朗肯循环发电功率的影响,并以产品能耗为标准,对精馏塔参数进行了优化。结果 当两级循环工质为纯工质时,丙烯+乙烯的组分搭配液化量和发电功率最大,分别为377 900 kg/h,2 284 kW;当循环工质为混合物时,该工艺液化量和发电功率明显高于纯工质的情况,且在第一级循环中混合工质乙烷与丙烯物质的量比为9.0∶1.0、第二级循环中混合工质甲烷、乙烯与丙烯物质的量比为2.0∶6.0∶2.0的情况下,液化量和发电功率最大,分别为386 200 kg/h,3 042 kW;合适的精馏塔塔板数为30块,进料位置为第10块塔板处,回流比为0.6。结论 经与单级朗肯循环等其他工艺相比,双级朗肯循环工艺的CO2液化率及?效率高,同时可将LNG冷能转换为电能并生产高纯度的液态CO2产品,用于LNG接收站冷能利用模块。
关键词:  LNG  冷能利用  CO2液化  提纯  朗肯循环  工质优选
DOI:10.3969/j.issn.1007-3426.2025.01.006
分类号:
基金项目:
Design and optimization of CO2 liquefaction purification and power generation process based on LNG cold energy
Wenzheng GONG1, Fei WANG2,3,4, Yingguang WANG1, Yong LIANG1, Heng SUN2,3,4, Da ZHENG1, Yanjing WANG2,3,4, Bohui SHI2,3,4
1.PipeChina Engineering Technology Innovation Co., Ltd., Tianjin, China;2.National Engineering Research Center of Oil and Gas Pipeline Transportation Safety, China University of Petroleum, Beijing, China;3.Key Laboratory of Petroleum Engineering of Ministry of Education, China University of Petroleum, Beijing, China;4.Beijing Key Laboratory of Urban Oil and Gas Transportation and Distribution Technology, China University of Petroleum, Beijing, China
Abstract:
Objective In order to produce high purity CO2 which can be directly used in industrial manufacturing and food processing, a new process using LNG cold energy for liquefaction and purification of CO2 and power generation is proposed. Method HYSYS software was used to simulate different cycle working fluids and different operating parameters. The influence of cycle working fluids on CO2 liquefaction and Rankine cycle power generation was analyzed. The parameters of rectification column were optimized according to product energy consumption. Result When the two-stage cycle working fluids were pure working fluids, the liquefaction amount and power generation of propylene + ethylene components were the largest, which were 377 900 kg/h and 2 284 kW, respectively. When the cycle working fluids were mixture, the liquefaction amount and power generation of the process were significantly higher than that of the pure working fluids. In the first cycle, the molar ratio of ethane and propylene of the mixing working fluids was 9∶1, and in the second cycle, the molar ratio of methane, ethylene and propylene of the mixing working fluids was 2.0∶6.0∶2.0, the liquefaction amount and power generation were the largest, which were 386 200 kg/h and 3 042 kW, respectively; the number of suitable rectification column plates was 30, the feeding position was the 10th tower plate, and the reflux ratio was 0.6. Conclusion Compared with other processes such as single-stage Rankine cycle, the two-stage Rankine cycle process proposed in this paper has a higher CO2 liquefacation rate and exergy efficiency, and can convert LNG cold energy into electric energy and produce high-purity liquid CO2 products for cold energy utilization modules in LNG receiving stations.
Key words:  LNG  cold energy utilization  CO2 liquefaction  purification  Rankine cycle  working fluids optimization